
Confidential \ Commercial

WORKSHOP 2.

Prerequisites.

• Download workshop repo:
• https://github.com/MangoTheCat/plumber.workshop

• R (programming language) and Rtools (Windows):
• https://cran.r-project.org/bin/windows/base/
• https://cran.r-project.org/bin/windows/Rtools/

• Rstudio (R IDE: free version):
• https://www.rstudio.com/products/rstudio/download/

• R Packages:
• plumber (1.1.0)
• jsonlite
• httr

• CVrisk
• readr
• devtools
• remotes

CONNECTING DATA, SOFTWARE AND PURPOSE 3

Postman (application for sending HTTP
requests):

https://www.postman.com/downloads/

Docker (application for building and running
containers):

https://www.docker.com/get-started/

Required Optional (advanced)

https://github.com/MangoTheCat/plumber.workshop
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/Rtools/
https://www.rstudio.com/products/rstudio/download/
https://www.postman.com/downloads/
https://www.docker.com/get-started/

Schedule.
Section Description Time

Background What are APIs and what is plumber? 10:00 –10:30am

Introductory exercises

An easy API

10:30-11:20amRunning the package API

Creating simple endpoints

Using serializers

Sending GET requests

Break 11:20-11:40am

Intermediate exercises
Sending POST requests

11:40-12:30pmUsing global data

Plumber request and response objects

Authorization filter

Advanced exercises Dockerizing API 12:30-13:00pm

Asynchronous endpoints

CONNECTING DATA, SOFTWARE AND PURPOSE 4

Background.

CONNECTING DATA, SOFTWARE AND PURPOSE 5

What is an API?
• APIs provide an interface for two applications to

communicate, and share data and functionality
programmatically

• Every website is an API, but not all APIs are
websites, for example:
• Google Maps API
• Python Tensorflow API

• API is a general term, here we are talking about:

Making R functions available to other applications
via a URI that can accept HTTP requests

CONNECTING DATA, SOFTWARE AND PURPOSE 6

Definitions:

HTTP = Protocol for
sending messages in a
structured format

API = Application
programming interface

GET = get some data
(e.g. websites)

POST = post some data,
get some data back
(e.g. ML models)

What is plumber?
• Plumber allows you to create a web API

by simply decorating R code with
roxygen2-style annotations.

• Example use-cases:
• Serve statistical models
• Serve machine learning models as

endpoints
• Integrate R visualizations into other

applications
• Share data

CONNECTING DATA, SOFTWARE AND PURPOSE 7

Response
- HTTP status code (200: Success, 404: Not

found)
- Header: key-value pairs (content-type=JSON)
- Body: contains data

POST Request
- Header: key-value pairs (auth-

key=[password])
- Body: contains data
- (Some other ~default info like source of

request) {
“height”:180
“weight”:67

}

{
“bmi”:20.6

}

Example plumber endpoint.

CONNECTING DATA, SOFTWARE AND PURPOSE 8

These are block
annotations and are
used to specify the
attributes of an
endpoint, filter or
static file handler in
plumber. They start
with #*

(1) Summary field The first
comment without an
@annotation

(2) Description field Additional
comments without @annotations

(4-10) Parameters Endpoint
parameter names, data-types
and descriptions

(12) HTTP method and path
Annotation used to generate an
endpoint (e.g: @get and @post)
followed by the path

(13) Serializer Output/return type

(14) Endpoint function This is the
function which is called from a
request to the endpoint

Block annotations for endpoints are
always followed by a function. If the
function is available, the name is
sufficient, however, the function can be
specified here anonymously à

Introductory
exercises.

CONNECTING DATA, SOFTWARE AND PURPOSE 9

0 – An easy API.

q Open Rstudio

q Create a file called plumber.R

q Enter the following code and SAVE:

q In the top right corner of the script pane – click Run API

q Voila, your first API!

q In the swagger UI that pops up, click Try it out and then Execute.

q You can now delete this file! As we will be using another plumber.R file for the

workshop

#* @get /hello
function() "Hello world!"

CONNECTING DATA, SOFTWARE AND PURPOSE 10

1 – Setting up the project.

In the repo there is an API that is
setup like an R package in a similar
way golem is used for shiny apps.

In the first exercise (next slide) we
will run and interact with the
existing API in this package.

• docs: documents for
this workshop

• inst: package file,
contains API
specification files

• man: help for the R/
functions

• R: R functions

• tests: tests for scripts
in R/

CONNECTING DATA, SOFTWARE AND PURPOSE 11

1 – Instructions.

q Download workshop repo: https://github.com/adamwaring/plumber.workshop

q Open the project in Rstudio

q Run the code then

q Install dependencies ./install_dependencies.R

q Open the file ./inst/api/plumber.R

q In the top right corner of the script pane – click Run API

q A new window should open with the swagger interface to the API. Click on the endpoint

/heart_disease_risk and click Try it out

devtools::install() devtools::load_all()

CONNECTING DATA, SOFTWARE AND PURPOSE 12

https://github.com/adamwaring/plumber.workshop

2 – Creating Endpoints using block annotations.
• Plumber allows you to specify endpoints using header comments called block

annotations.

• Plumber annotations start with #* and can be followed by @[keyword]

• In the plumber.R file from the previous exercise, annotations are already used:
• global annotations #* @apiTitle and #* @apiDescription
• block annotations preceding the filter and the endpoint.

• In exercise 2, let’s create some more endpoints!

See here for all available annotations
https://www.rplumber.io/articles/annotations.html.

CONNECTING DATA, SOFTWARE AND PURPOSE 13

https://www.rplumber.io/articles/annotations.html

2 – Instructions.

Endpoint 1
q Summary field: Check the API is working
q Method and path: #* @get /ok
q Endpoint function: function() "OK“

Endpoint 2
q Summary field: Greetings {name}
q Method and path: #* @get /greetings
q Param: #* @param name:string User name
q Endpoint function: function(name) paste0("Hello ", name, "!")

Check your new endpoints in the auto-generated
Swagger interface using the Run API button at the top
of the script!

CONNECTING DATA, SOFTWARE AND PURPOSE 14

3 – Serializers.
• Serializers specify the response body format

• The default is JSON but many more are available including tables (csv, tsv)
and images (png)

• See here for all available serializers
https://www.rplumber.io/reference/serializers.html

• In exercise 3, let’s create an endpoint with a non-default serializer!

CONNECTING DATA, SOFTWARE AND PURPOSE 15

https://www.rplumber.io/reference/serializers.html

3 – Instructions (choose 1 to implement).

Endpoint 1
q Summary field: Returns a random normal

histogram
q Method and path: #* @get /histogram
q Serializer: #* @serializer png
q Endpoint function: function() hist(rnorm(1000))

Endpoint 2
q Summary field: Returns the sum of two numbers
q Method and path: #* @get /add
q Param 1: #* @param x:int number 1
q Param 2: #* @param y:int number 2
q Serializer: #* @serializer unboxedJSON
q Endpoint function: function(x, y) as.numeric(x) +

as.numeric(y)

Endpoint 3

q Summary field: Returns the Iris dataset in tsv
format

q Method and path: #* @get /iris

q Serializer: #* @serializer tsv

q Endpoint function: function() iris

NOTE: Swagger sends arguments as strings even if
you specify #* @param x:int use as.numeric() to
convert them

CONNECTING DATA, SOFTWARE AND PURPOSE 16

4 – Sending HTTP requests (GET).
• So far we used the swagger API to send HTTP requests

• There are many ways to send these HTTP requests, including any common
programming languages

• In R it can be with the httr package

• In the next exercise, we will see how to send GET requests from a web
browser, from within R and from the command line

CONNECTING DATA, SOFTWARE AND PURPOSE 17

4 – Instructions.
Firstly, let’s run the API with a specific port.

q Instead of using the Run API button – open the file called ./main.R
q In the top-right of the script panel source the script as a local job (this runs the API in another session)

1. Web browser
q http://localhost:80/greetings?name=Gandalf
q http://localhost:80/histogram

2. Within R (httr)
q Open the file ./tests/GET_requests_with_httr.R
q Run the code for /greetings and /add
q Test the /iris endpoint yourself

3. Command prompt (curl)
q Open a command prompt, and type:
q curl "http://localhost/add?x=1&y=2"

CONNECTING DATA, SOFTWARE AND PURPOSE 18

http://localhost/greetings?name=Gandalf
http://localhost/histogram

Intermediate
exercises.

CONNECTING DATA, SOFTWARE AND PURPOSE 19

1 – Sending HTTP requests (POST).
• Sending GET requests is easy as we can send the parameters as query

arguments

• For POST requests we usually want to send a more structured request with a
body containing data

• As well as a body you can send header attributes as key-value pairs which will
come in handy later (auth)

• The next exercise demonstrates how to send POST requests with curl, httr and
Postman https://www.postman.com/downloads/

CONNECTING DATA, SOFTWARE AND PURPOSE 20

https://www.postman.com/downloads/

1 – Instructions.
qIf not still running, run the API with a specific port as a local job.

1. Command prompt (curl)
q Open a command prompt, and type:
q curl -X POST "http://localhost:80/heart_disease_risk" -H "Content-

Type: application/json" -d "{\"sex\": \"male\", \"age\": 50, \"bmi\":
24, \"sbp\": 125, \"bp_med\": 0, \"smoker\": 0, \"diabetes\": 1}"

2. Within R (httr)
q Open the file ./tests/POST_requests_with_httr.R
q Run the code for the /heart_disease_risk endpoint

Can also do it a
cleaner way with a
JSON file containing
the data

CONNECTING DATA, SOFTWARE AND PURPOSE 21

2 – Global data.
• Any data declared at the top of the ./plumber.R script is global data that

can be accessed by subsequent filters and endpoints

• This is useful in terms of performance as it is loaded once to serve many
HTTP requests

• In this exercise, we will create an endpoint that returns expected lifespan
(UK) given age and sex based on a table of data stored in
./inst/extdata/lifespan_data_UK.tsv

CONNECTING DATA, SOFTWARE AND PURPOSE 22

2 – Instructions.

Global data

lifespan_path = system.file("extdata", "lifespan_data_UK.tsv", package = "plumber.workshop")
lifespan = read.table(lifespan_path, sep="\t", h=T)

Endpoint
q Summary field: Returns average lifespan (UK)

q Method and path: #* @post /average_lifespan

q Param 1: #* @param age:int User age 0-100

q Param 2: #* @param sex:string User sex male or female

q Serializer: #* @serializer unboxedJSON

q Endpoint function: function(age, sex){
plumber.workshop::average_lifespan(age, sex, lifespan)

}

This is not a parameter for the
endpoint, it is taken from the
global environment

Reading the file this way works for both local
development and after installation of the package
in a deployment environment

CONNECTING DATA, SOFTWARE AND PURPOSE 23

3 – The request and response objects.

• Plumber conveniently extracts the parameters in the request object
and matches them to the endpoint functions

• However there are situations where you might want to directly access
the request object and do the extraction yourself – for example filters,
or when the number of parameters becomes unmanageable

• Both the request and response objects are environments

• The next exercise will demonstrate how to interact with these objects

CONNECTING DATA, SOFTWARE AND PURPOSE 24

3 – Instructions.
q Create and run the following endpoint

Endpoint
q Summary field: Debugging endpoint
q Method: #* @post /browser

q Endpoint function: function(req, res) browser()

q Open and command line, and type:
curl -X POST "http://localhost:80/browser" -H "Content-Type:
application/json" -d "{\“x\": 1, \“y\": 2}"

q Once the browser()
breakpoint is activated
you will be directed to
the console, explore the
object req (request) and
res (response):

mode(req)
names(req)
as.list(req)
req$args
req$postBody
mode(res)
names(res)
res$status

CONNECTING DATA, SOFTWARE AND PURPOSE 25

4 – Filters.

• Now we are familiar with the request and response objects we will look
at filters

• Filters modify the incoming request before it reaches the endpoints

• A logging filter has already been created, inspect its code in R/

• In the next exercise we will implement an authorization filter

CONNECTING DATA, SOFTWARE AND PURPOSE 26

4 – Instructions.
Filter
q Filter name: #* auth

q Filter function: plumber.workshop::authorizer

q Create an environment variable with the authorization password
Sys.setenv(plumber_auth_key="test123") – this is not persistent across sessions

q Any requests without the authorization header will now fail – use #* @preempt auth in the block
annotations of select endpoints to skip authorization

q To make a request with the authorization key use httr, curl or Postman - See next slide for more
detail

Inspect the
function in
the .R/ folder

CONNECTING DATA, SOFTWARE AND PURPOSE 27

4 – More detail.

q httr
q Open the file

./tests/POST_requests_with_httr.R
q Create the AUTHORIZATION header with

the following line:
headers = httr::add_headers(AUTHORIZATION = "test123")

q In the POST request add the argument:
config=headers

q curl
q Open a command prompt, and type:
curl -X POST "http://localhost:80/heart_disease_risk" -H
"Content-Type: application/json” -H
“Authorization:test123" -d "{\"sex\": \"male\", \"age\": 50,
\"bmi\": 24, \"sbp\": 125, \"bp_med\": 0, \"smoker\": 0,
\"diabetes\": 1}"

is_swagger_request = function(path_info){

swagger_urls = c("/__docs__/", "/__swagger__/",
"/openapi.json")

any(sapply(swagger_urls, function(x) grepl(x,
path_info)))

}
**path_info = req$PATH_INFO

However, you cannot use endpoints with the
swagger interface as you cannot provide the key,
to allow certain endpoints to skip this
authentication process, use annotation: #*
@preempt auth

When running the API using RunAPI – you will now
get an authentication error because swagger sends
requests (without headers) to build the interface.

To avoid this you can drop the swagger or use a
separate helper function to skip authentication for
swagger requests:

Sidenote: Authentication and Swagger

CONNECTING DATA, SOFTWARE AND PURPOSE 28

Advanced exercises.

CONNECTING DATA, SOFTWARE AND PURPOSE 29

1 – Dockerize your application.
Running plumber APIs from a Docker container is easy and if you can do this you can deploy it pretty
much anywhere including Azure, AWS, Google Cloud …..

q Download and install Docker https://www.docker.com/get-started/
q Start Docker
q Inspect the dockerfile in the project root (see next slide)
q Open a command prompt:

q Navigate to the project directory (cd)
q Run the following commands:

q docker build -t plumber_workshop .
q docker run --rm -p 80:80 plumber_workshop

q Test the API running at localhost:80 using a method of your choice (easiest way
is typing http://localhost:80/ok into the browser)

Congratulations, your API is running in a Docker container!

CONNECTING DATA, SOFTWARE AND PURPOSE 30

https://www.docker.com/get-started/
http://localhost/ok

pull a docker image for a baseline image
contains linux libraries, R and plumber
FROM rstudio/plumber

create the ENV object for authentication (demo
only)
WARNING! this is not a secure way to store
passwords
ENV plumber_auth_key="[enter password here]"

install packages
RUN Rscript -e "install.packages(c('remotes',
'CVrisk', 'readr'))"

copy everything into a build directory and install
package
RUN mkdir/build_zone
ADD . /build_zone
WORKDIR/build_zone
RUN Rscript -e
'remotes::install_local(upgrade="never")'

open port 80 to traffic
EXPOSE 80

when the container starts, start the main.R script
ENTRYPOINT ["Rscript", "main.R"]

Base Docker Image: Dockerfiles often
start with a base image for simplicity,
here it contains the R language,
plumber package and potentially some
other things

Environmental variable:
Here the environmental
variable for the
authorization filter is
declared. WARNING! This is
not a secure way to store
passwords but functions
only for this demonstration

Copy and install: Add R
package to the container,
all files will be included in
the image including data
files. It is possible to create
a .dockerignore file that
functions in the same way
as .gitignore, this way files
only required for
development can be
excluded from this copy
command

Install required R packages:
Occasionally you will see errors on build
that will indicate further package
requirement e.g. here we do not call
library(readr) in our project but its
installation is necessary for @serializer
tsv

Open port: necessary to
open a connection
between the API and
the end-user

Start the application:
uses the Rscript
command to run the
main.R script when
the container starts

The Dockerfile.

CONNECTING DATA, SOFTWARE AND PURPOSE 31

2 – Performance, futures and promises.
• R is a single-threaded language with no native support for parallel computation like Julia or C++

• This means, without special consideration, the performance of your API is only as efficient as your
code

• Each new HTTP request will form a queue and will execute only when the previous request has been
served

• One way to overcome this is to use a load balancer, this is usually part of a deployment setup, which
distributes incoming traffic over multiple instances of your API

• However, it is also possible to achieve asynchronous code using the future package in conjunction
with plumber

https://www.rstudio.com/resources/rstudioglobal-2021/plumber-and-future-async-web-apis/

• In the next exercise we will see this in action.

CONNECTING DATA, SOFTWARE AND PURPOSE 32

https://www.rstudio.com/resources/rstudioglobal-2021/plumber-and-future-async-web-apis/

2 – Instructions.
• Navigate to the file inst/api_future/plumber_future.R

• Notice the slow function has commented out the future expression

• Run the API and open two command prompts

• In the first send a request to the slow endpoint, in the second send a request to the fast
endpoint

curl “http://127.0.0.1:[enter-port]/slow”

curl "http://127.0.0.1:[enter-port]/fast"

• Notice the fast endpoint waits for the slow endpoint to finish

• Now uncomment the future expression in /slow and run again

• If all goes well, your fast expression should execute instantly!

CONNECTING DATA, SOFTWARE AND PURPOSE 33

Further information.

CONNECTING DATA, SOFTWARE AND PURPOSE 34

Postman – instructions.
Postman

q Download and install Postman
q On startup you can skip creating an account
q Navigate to the new HTTP request section (while in a workspace see the + for

a new tab)
q Enter the URL including endpoint path
q Add data into the body in JSON format à
q Send the request
q More details next slide…

JSON input data

{
"sex" : "male",
"age" : 50,
"bmi" : 22,
"sbp" : 134,
"bp_med" : 1,
"smoker" : 1,
"diabetes" : 0

}

CONNECTING DATA, SOFTWARE AND PURPOSE 35

POSTMAN HTTP request using JSON.

Collection
name: group
of related
requests

Request
method: GET,
POST, PUT etc.
(HTTP verb)

Request body:
data to send to
API

Request name:
identifier for
request

API URL: base API
address + endpoint
path

Request
component: Body =
input data

Send: send the
HTTP request to
the API

Body data format
(JSON): JSON is
most common – it
is a named list of
inputs

Response: Your
results

Body type (raw): Further
define with the body data
format drop-down tab

CONNECTING DATA, SOFTWARE AND PURPOSE 36

Things I didn’t cover.

• There is much I didn’t cover here that is worth knowing – here are some examples:

• Parsers: The @parser filter can be used to define the format of the post body
• https://www.rplumber.io/reference/parsers.html

• File upload: APIs can be configured to accept files as inputs (use in conjunction with parsers)
• https://www.rplumber.io/articles/annotations.html

• Static files: Static file can be served with your API
• https://www.rplumber.io/reference/PlumberStatic.html

• Programmatic usage: instead of using #* comments, you can explicitly code your API
• https://www.rplumber.io/articles/programmatic-usage.html

CONNECTING DATA, SOFTWARE AND PURPOSE 37

https://www.rplumber.io/reference/parsers.html
https://www.rplumber.io/articles/annotations.html
https://www.rplumber.io/reference/PlumberStatic.html
https://www.rplumber.io/articles/programmatic-usage.html

Further information.

• Official documentation

• https://www.rplumber.io/

• Cheat sheet

• https://raw.githubusercontent.com/rstudio/cheat
sheets/main/plumber.pdf

• Code organization and packaging

• https://github.com/ozean12/plungr - still under
development

• https://community.rstudio.com/t/plumber-api-
and-package-structure/18099/11

• Authentication and authorization

• https://github.com/jandix/sealr

Other R API frameworks

• Rest R serve:
https://restrserve.org/

• BeakR:
https://github.com/Mazama
Science/beakr

• Ambiorix:
https://github.com/devOpife
x/ambiorix

• Fiery:
https://github.com/thomasp
85/fiery

CONNECTING DATA, SOFTWARE AND PURPOSE 38

https://www.rplumber.io/
https://raw.githubusercontent.com/rstudio/cheatsheets/main/plumber.pdf
https://github.com/ozean12/plungr
https://community.rstudio.com/t/plumber-api-and-package-structure/18099/11
https://github.com/jandix/sealr
https://restrserve.org/
https://github.com/MazamaScience/beakr
https://github.com/devOpifex/ambiorix
https://github.com/thomasp85/fiery

Introduction to REST APIs
Web APIs use HTTP to communicate between client and server.

REST APIs with plumber: : CHEAT SHEET

Filters can forward requests (after potentially mutating them), throw
errors, or return a response without forwarding the request. Filters
are defined similarly to endpoints using the @filter [name]
tag. By default, filters apply to all endpoints. Endpoints can opt out
of filters using the @preempt tag.

Documentation

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at www.rplumber.io • plumber 1.1.0 • Updated: 2021-03

HTTP

HTTP is built around a request and a response. A client makes a
request to a server, which handles the request and provides a
response. Requests and responses are specially formatted text
containing details and data about the exchange between client and
server.
REQUEST

RESPONSE

Plumber APIs can be run programmatically
from within an R session.

Running Plumber APIs

Interact with the API

Plumber pipeline

Endpoints define the R code that is executed in response to
incoming requests. These endpoints correspond to HTTP methods
and respond to incoming requests that match the defined method.
METHODS

IDE INTEGRATION

Once the API is running, it can be interacted with using any HTTP
client. Note that using httr requires using a separate R session
from the one serving the API.

Plumber endpoints contain R code that is executed in response to an
HTTP request. Incoming requests pass through a set of mechanisms
before a response is returned to the client.

�
server

�
client

HTTP
request

response

#< HTTP/1.1 200 OK
#< Connection: keep-alive
#< Date: Thu, 02 Aug 2018 18:22:22 GMT

Response Body

HTTP Version Status code
Reason phrase

Headers

Message body

curl -v “http://httpbin.org/get”

#> GET / get HTTP/1.1
#> Host: httpbin.org
#> User-Agent: curl/7.55.1
#> Accept: */*

Request Body

HTTP Method

Path

HTTP Version
Headers

Message body

Plumber uses special comments to turn any arbitrary R code into API
endpoints. The example below defines a function that takes the msg
argument and returns it embedded in additional text.

• @get - request a resource
• @post - send data in body
• @put - store / update data
• @delete - delete resource

• @head - no request body
• @options - describe options
• @patch - partial changes
• @use - use all methods

library(plumber)

#* @filter log
function(req, res) {
 print(req$HTTP_USER_AGENT)
 forward()
}

#* Convert request body to uppercase
#* @preempt log
#* @parser json
#* @post /uppercase
#* @serializer json
function(req, res) {
 toupper(req$body)
}

Endpoint
description

Serializer

HTTP Method
Endpoint path

Serializers determine how Plumber returns results to the client. By
default Plumber serializes the R object returned into JavaScript
Object Notation (JSON). Other serializers, including custom
serializers, are identified using the @serializer
[serializer name] tag. All registered serializers can be
viewed with registered_serializers().

library(plumber)

plumb("plumber.R") %>%
 pr_run(port = 5762)

This runs the API on the host machine supported by the current R
session.

Path to API definition

Run API in
current R session

Publish API to
RStudio Connect

Create new
Plumber API

Plumber APIs automatically generate an OpenAPI specification file.
This specification file can be interpreted to generate a dynamic
user-interface for the API. The default interface is generated via
Swagger.

(resp <- httr::GET("localhost:5762/echo?msg=Hello"))
#> Response [http://localhost:5762/echo?msg=Hello]
#> Date: 2018-08-07 20:06
#> Status: 200
#> Content-Type: application/json
#> Size: 35 B
httr::content(resp, as = "text")
#> [1] "{\"msg\":[\"The message is: 'Hello'\"]}"

library(plumber)

#* @apiTitle Plumber Example API

#* Echo back the input
#* @param msg The message to echo
#* @get /echo
function(msg = "") {
 list(
 msg = paste0(
 "The message is: '", msg, "'")
)
}

@ decorators
define API

characteristics

/<path> is used to
define the location

of the endpoint

Plumber
comments

begin with #*

HTTP Method

Identify as
filter

Forward
request

Filter name

Plumber: Build APIs with R

Specify API
port

Endpoint details

curl command used to
send request

Parameter details Edit parameters

Send request

FILTERS

PARSER

ENDPOINT

SERIALIZER

Parsers determine how Plumber parses the incoming request body.
By default Plumber parses the request body as JavaScript Object
Notation (JSON). Other parsers, including custom parsers, are
identified using the @parser [parser name] tag. All
registered parsers can be viewed with registered_parsers().

Parser
Opt out of

the log filter

https://creativecommons.org/licenses/by-sa/4.0/
mailto:info@rstudio.com
http://rstudio.com
http://www.rplumber.io

Once Plumber APIs have been
developed, they often need to be
deployed somewhere to be useful.
Plumber APIs can be deployed in a
variety of different ways. One of the
easiest way to deploy Plumber APIs is using RStudio Connect,
which supports push button publishing from the RStudio IDE.

Advanced Plumber

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at www.rplumber.io • plumber 1.1.0 • Updated: 2021-03

REQUEST and RESPONSE

Deploying Plumber APIs

Plumber automatically creates an OpenAPI specification file based on
Plumber comments. This file can be further modified using
pr_set_api_spec() with either a function that modifies the
existing specification or a path to a .yaml or .json specification file.

Plumber provides access to special req and res objects that can
be passed to Plumber functions. These objects provide access to the
request submitted by the client and the response that will be sent to
the client. Each object has several components, the most helpful of
which are outlined below:

library(plumber)

#* @plumber
function(pr) {
 pr %>%
 pr_get(path = "/echo",
 handler = function(msg = "") {
 list(msg = paste0(
 "The message is: '",
 msg,
 "'")
)
 }) %>%
 pr_get(path = "/plot",
 handler = function() {
 rand <- rnorm(100)
 hist(rand)
 },
 serializer = serializer_png()) %>%
 pr_post(path = "/sum",
 handler = function(a, b) {
 as.numeric(a) + as.numeric(b)
 })
}

Use @plumber tag

Function that accepts and
modifies a plumber router

“Tidy” functions
for building out

Plumber API

Name Example Description

req

req$pr plumber::pr()
The Plumber router
processing the request

req$body list(a=1)
Typically the same as
argsBody

req$argsBody list(a=1)
The parsed body
output

req$argsPath list(c=3)
The values of the path
arguments

req$argsQuery list(e=5)
The parsed output from
req$QUERY_STRING

req$cookies list(cook = "a") A list of cookies

req$REQUEST_METHOD "GET"
The method used for
the HTTP request

req$PATH_INFO "/"
The path of the
incoming HTTP request

req$HTTP_* "HTTP_USER_AGENT"
All of the HTTP headers
sent with the request

req$bodyRaw charToRaw("a=1")
The raw() contents of
the request body

res

res$headers
list(header =
"abc")

HTTP headers to
include in the response

res$setHeader()
setHeader("foo",
"bar")

Sets an HTTP header

res$setCookie()
setCookie("foo",
"bar")

Sets an HTTP cookie on
the client

res$removeCookie removeCookie("foo")
Removes an HTTP
cookie

res$body "{\"a\":[1]}" Serialized output

res$status 200
The response HTTP
status code

res$toResponse() toResponse()
A list of status,
headers, and body

OpenAPI

Tidy Plumber

library(plumber)

#* @param msg The message to echo
#* @get /echo
function(msg = "") {
 list(
 msg = paste0(
 "The message is: '", msg, "'")
)
}

#* @plumber
function(pr) {
 pr %>%
 pr_set_api_spec(function(spec) {
 spec$paths[["/echo"]]$get$summary <-
 "Echo back the input"
 spec
 })
}

By default, Swagger is used to interpret the OpenAPI specification file
and generate the user interface for the API. Other interpreters can be
used to adjust the look and feel of the user interface via
pr_set_docs().

Programmatic Plumber

Plumber is exceptionally customizable. In addition to using special
comments to create APIs, APIs can be created entirely programatically.
This exposes additional features and functionality. Plumber has a
convenient “tidy” interface that allows API routers to be built piece by
piece. The following example is part of a standard plumber.R file.

Function that receives
and modifies the existing

specification

ASYNC PLUMBER
Plumber supports asynchronous execution via
the future R package. This pattern allows
Plumber to concurrently process multiple
requests.

library(plumber)
future::plan("multisession")

#* @get /slow
function() {
 promises::future_promise({
 slow_calc()
 })
}

Slow calculation

Set the execution
plan

MOUNTING ROUTERS
Plumber routers can be combined by mounting routers into other
routers. This can be beneficial when building routers that involve
several different endpoints and you want to break each component
out into a separate router. These separate routers can even be
separate files loaded using plumb().

library(plumber)

route <- pr() %>%
 pr_get("/foo", function() "foo")

#* @plumber
function(pr) {
 pr %>%
 pr_mount("/bar", route)
}

Mount one router
into another

Create an initial
router

RUNNING EXAMPLES
Some packages, like the Plumber package itself, may include
example Plumber APIs. Available APIs can be viewed using
available_apis(). These example APIs can be run with
plumb_api() combined with pr_run().

library(plumber)

plumb_api(package = "plumber",
 name = "01-append",
 edit = TRUE) %>%
 pr_run()

Identify the
package name and

API name

Optionally open the
file for editingRun the example

API

Return the updated
specification

In the above example, the final route is /bar/foo.

https://creativecommons.org/licenses/by-sa/4.0/
mailto:info@rstudio.com
http://rstudio.com
http://www.rplumber.io

EARL Conference 2022 39

	Introduction_to_Plumber_APIs_slides
	Introduction_to_Plumber_APIs

