
Confidential \ Commercial

WORKSHOP 3.

Objectives

§ Describe explainable AI methods
§ Explain the importance of building explainable models to other

stakeholders
§ Implement a range of XAI techniques with DALEX

At the end of this workshop you will be able to:

§ Other responsible ML tools like fairness
§ Different packages pros and cons

You won’t learn much about:

CONNECTING DATA, SOFTWARE AND PURPOSE 3

Requirements

• Some understanding of modelling concepts.
• R and RStudio installed.

You will need

• Prior knowledge of explainable AI methods.

You won’t need

CONNECTING DATA, SOFTWARE AND PURPOSE 4

Once upon a time…

CONNECTING DATA, SOFTWARE AND PURPOSE 5

There was a great algorithm

And it was retired, not so happily, ever after

CONNECTING DATA, SOFTWARE AND PURPOSE 6

Because it stopped working

• Missed a summer
outbreak

• Overestimated winter
outbreaks

Why should you care?

CONNECTING DATA, SOFTWARE AND PURPOSE

Data Scientist

7

Why should you care?

CONNECTING DATA, SOFTWARE AND PURPOSE

Data Scientist

Business
stakeholder

8

Why should you care?

CONNECTING DATA, SOFTWARE AND PURPOSE

Data Scientist Consumer

Business
stakeholder

9

Why should you care?

CONNECTING DATA, SOFTWARE AND PURPOSE

Data Scientist Consumer

Business
stakeholder

Regulator

10

How to explain your AI

CONNECTING DATA, SOFTWARE AND PURPOSE

Use interpretable
models

Publish algorithms Analysis >
Modelling

Proxy models Model analysis

11

How to explain your AI

CONNECTING DATA, SOFTWARE AND PURPOSE

Use interpretable
models

Publish algorithms Analysis >
Modelling

Proxy models Model analysis

12

Types of model analysis

CONNECTING DATA, SOFTWARE AND PURPOSE

Global Local

Variable importance for model
Feature Importance

Variable importance for single
prediction

Break Down (BD)
SHAP
LIME

Variable variability affect on prediction
Partial Dependence Plots (PDP)

Accumulated Local Effects (ALE)

Sensitivity analysis
Ceteris Paribus (CP)

Individual Conditional Expectations (ICE)

Model diagnostics
Residual plots,

Variable vs. prediction plots

Predict diagnostics
Local residual density plot

13

Types of model analysis

CONNECTING DATA, SOFTWARE AND PURPOSE

Global Local

Variable importance for model
Feature Importance

Variable importance for single
prediction

Break Down (BD)
SHAP
LIME

Variable variability affect on prediction
Partial Dependence Plots (PDP)

Accumulated Local Effects (ALE)

Sensitivity analysis
Ceteris Paribus (CP)

Individual Conditional Expectations (ICE)

Model diagnostics
Residual plots,

Variable vs. prediction plots

Predict diagnostics
Local residual density plot

14

Types of model analysis

CONNECTING DATA, SOFTWARE AND PURPOSE 15

Global Local

Variable importance for model
Feature Importance

Variable importance for single
prediction

Break Down (BD)
SHAP
LIME

Variable variability affect on prediction
Partial Dependence Plots (PDP)

Accumulated Local Effects (ALE)

Sensitivity analysis
Ceteris Paribus (CP)

Individual Conditional Expectations (ICE)

Model diagnostics
Residual plots,

Variable vs. prediction plots

Predict diagnostics
Local residual density plot

v

. 0

. 2

. 6

. 10

. 12

. 16
. .17
. .18

. 20

. 26
. .27
. .28
. .31

. 34
. .35
. .36
. .38

. 42
. .43
. .43
. .43
. .43

. 44

Chapter 1 Pre-requisites
Chapter 2 Introduction
Chapter 3 Environment set up
Chapter 4 Make two models
5 Build the explainers
Chapter 6 Model performance

6.1 Make the model performance object
6.2 Plot residuals

Chapter 7 Model Diagnostics
Chapter 8 Global explainer

8.1 Variable Importance
8.2 Partial Dependency Plots (PDP)
8.3 Accumulated Local Effect (ALE)

Chapter 9 Local explainer
9.1 Break down
9.2 Shapley Values
9.3 Local Interpretable Model-agnostic Explanations (LIME)

Chapter 10 Exercise solutions
6.1.1 Exercise
6.2.1 Exercise
7.0.1 Exercise
8.2.3 Exercise

11 Resources

0

Chapter 1
Pre-requisites

1 Pre-requisites

1

This workshop proceeds under the assumption that the reader is familiar with the
following concepts:

Modelling in R
Statistical methods of model evaluation

2

Chapter 2
Introduction

2 Introduction

3

Why is XAI important?

Modelling packages, such as tidymodels or caret offer a common syntax to
conveniently test a selection of Machine Learning models and select the best
performing one based on a pre-defined metric. These tools have been invaluable in
enabling fast iteration and efficient innovation to productionise ML/AI powered
products.

A potentially undesirable side effect of this workflow is that it leads to considering very
different models as equivalent black-boxes that can be swapped in and out of the
pipeline.

This, in turn, makes it difficult to detect certain problems early enough. Insufficiently
tested models quickly lose their effectiveness, lead to unfair decisions, discriminate,
are deferred by users, and do not provide the option to appeal (Maksymiuk et al,
20211).

How can you use it?

XAI methods are often helpful, and sometimes, necessary. For example, when:

A model makes incorrect decisions
You work with inquisitive stakeholders who need to understand the underlying
dynamics of the model to trust it
You want to validate an assumption or increase domain knowledge
GDPR requires you to be able to justify automated decisions to the people who
are impacted by your models
You want to make a responsible model recommendation, knowing not just if the
model makes accurate decisions but how it gets there

What is DALEX / DALEXtra?

The DALEX and DALEXtra packages are implementations of a range of XAI methods.
According to the package authors themselves2:

The DALEX package xrays any model and helps to explore and explain
its behaviour, helps to understand how complex models are working.
The main function explain() creates a wrapper around a predictive
model. Wrapped models may then be explored and compared with a
collection of local and global explainers.

1https://arxiv.org/pdf/2009.13248.pdf
2https://github.com/ModelOriented/DALEX

https://arxiv.org/pdf/2009.13248.pdf
https://github.com/ModelOriented/DALEX

4

Why did we chose them?

There is a plethora of great packages in R to deep dive into your models predictions.
Among the most downloaded in CRAN you can find: lime, smbinning, iml, pdp and
many others. We picked DALEX for this workshop because:

DALEX works with a lot of modelling frameworks
It gives a standardised grammar to call lots the different model agnostic methods
It is one of the most popular R package on CRAN and Github

What are we covering in this workshop?

There are many taxonomies of explainable AI methods. For the purpose of this
workshop, we will follow the one made by Przemyslaw Biecek and Tomasz
Burzykowski in their book Explanatory Model Analysis3.

Model exploration techniques, as presented in Explanatory Model Analysis: Explore,
Explain, and Examine Predictive Models. With examples in R and Python. Chapters
listed are in reference to the book.

3https://ema.drwhy.ai/introduction.html

https://ema.drwhy.ai/introduction.html

2 Introduction

5

We will first look at the model performance and diagnostics, then look at global
explainers, such as feature importance, partial dependency plots and accumulated
local effects, before exploring local explainers, including break down plots, Shapley
values and LIME.

6

Chapter 3
Environment set
up

3 Environment set up

7

First things first, make sure you have the right packages installed and load the relevant
libraries as well as the data used for this tutorial.

Let’s add a random variable in both the training and the test set to see how this
impacts the feature importance and other explainable AI methods. We will also set
number of rooms and floor to be factor variables.

To get acquainted with the dataset, have a quick look at what we’re working with.

packages_to_install <- c('DALEX', 'randomForest', 'tidyverse')
install.packages(packages_to_install)

Load packages
library(DALEX)
library(randomForest)
library(tidyverse)

load data
data("apartments")
data("apartments_test")

data_transform <- function(data){
 data %>%
 mutate(random_var = runif(dim(data)[1]),
 no.rooms = as.factor(no.rooms),
 floor = as.factor(floor))
}

apartments <- apartments %>% data_transform()

apartments_test <- apartments_test %>% data_transform()

8

summary(apartments)
#> m2.price construction.year surface floor
#> Min. :1607 Min. :1920 Min. : 20.00 2 :116
#> 1st Qu.:2857 1st Qu.:1943 1st Qu.: 53.00 9 :108
#> Median :3386 Median :1965 Median : 85.50 10 :108
#> Mean :3487 Mean :1965 Mean : 85.59 6 :104
#> 3rd Qu.:4018 3rd Qu.:1988 3rd Qu.:118.00 7 :103
#> Max. :6595 Max. :2010 Max. :150.00 8 :103
#> (Other):358
#> no.rooms district random_var
#> 1: 99 Mokotow :107 Min. :0.0000839
#> 2:202 Wola :106 1st Qu.:0.2437661
#> 3:231 Ursus :105 Median :0.5002432
#> 4:223 Ursynow :103 Mean :0.5003114
#> 5:198 Srodmiescie:100 3rd Qu.:0.7589129
#> 6: 47 Bemowo : 98 Max. :0.9990245
#> (Other) :381

10

Chapter 4
Make two models

4 Make two models

11

We build two models, one linear regression model and one tree based model. This will
allow us to compare explanation methods for different types of models.

Linear models are inherently explainable while random forests are not. Illustrating
explanation methods with both should bring some clarity on the underlying
methodology of the explainers and showcase the value add of XAI methods for models
that are not inherently explainable.

set.seed(220808)

train RF model
apartments_rf_model <-
 randomForest::randomForest(m2.price ~ .,
 data = apartments)

train LM model
apartments_lm_model <- lm(m2.price ~ .,
 data = apartments)

predict on test set using RF
predicted_rf <- predict(apartments_rf_model,
 apartments_test)

predict on test set using LM
predicted_lm <- predict(apartments_lm_model,
 apartments_test)

12

5
Build the
explainers

5 Build the explainers

13

How does DALEX work?

DALEX is a wrapper around a model. The first step is therefore to wrap the model with
the explain function.

Let’s have a look at the output from this code. It is useful to refer to the
documentation4 to understand what the function expects.

4https://www.rdocumentation.org/packages/DALEX/versions/2.4.2/topics/explain.default

explainer_lm <- DALEX::explain(model = apartments_lm_model,
 data = apartments_test[,2:7], # test

data, excluding outcome
 y = apartments_test$m2.price
) # test data outcome column
#> Preparation of a new explainer is initiated
#> -> model label : lm (default)
#> -> data : 9000 rows 6 cols
#> -> target variable : 9000 values
#> -> predict function : yhat.lm will be used (default)
#> -> predicted values : No value for predict function target

column. (default)
#> -> model_info : package stats , ver. 4.2.0 , task

regression (default)
#> -> predicted values : numerical, min = 1812.558 , mean =

3505.844 , max = 6266.988
#> -> residual function : difference between y and yhat (

default)
#> -> residuals : numerical, min = -301.1235 , mean =

5.679968 , max = 563.5238
#> A new explainer has been created!

explainer_lm
#> Model label: lm
#> Model class: lm
#> Data head :
#> construction.year surface floor no.rooms district

random_var
#> 1001 1976 131 3 5 Srodmiescie

0.1404973
#> 1002 1978 112 9 4 Mokotow

0.3263997

https://www.rdocumentation.org/packages/DALEX/versions/2.4.2/topics/explain.default

14

The console prints the model information and the data head. Now, explore the
explainer object: what is available to you through this object?

explainer_rf <- DALEX::explain(model = apartments_rf_model,
 data = apartments_test[,2:7],
 y = apartments_test$m2.price)
#> Preparation of a new explainer is initiated
#> -> model label : randomForest (default)
#> -> data : 9000 rows 6 cols
#> -> target variable : 9000 values
#> -> predict function : yhat.randomForest will be used (

default)
#> -> predicted values : No value for predict function target

column. (default)
#> -> model_info : package randomForest , ver. 4.7.1.1 ,

task regression (default)
#> -> predicted values : numerical, min = 1867.907 , mean =

3502.116 , max = 6161.301
#> -> residual function : difference between y and yhat (

default)
#> -> residuals : numerical, min = -615.3261 , mean =

9.40788 , max = 947.041
#> A new explainer has been created!

show object
explainer_rf
#> Model label: randomForest
#> Model class: randomForest.formula,randomForest
#> Data head :
#> construction.year surface floor no.rooms district

random_var
#> 1001 1976 131 3 5 Srodmiescie

0.1404973
#> 1002 1978 112 9 4 Mokotow

0.3263997

5 Build the explainers

15

Preparation of a new explainer is initiated
 -> model label : your model label (e.g. Random Forest)
 -> data : dimensions of your data
 -> target variable : dimensions of your target variable
 -> predict function : the predict function for your model
 -> predicted values : Column in the model prediction object of
the positive class (Not relevant here)
 -> model_info : model package, version and type (here:
regression)
 -> predicted values : description of the output of your predict
function
 -> residual function : difference between y and yhat (default
)
 -> residuals : description of the residuals, after
running the predict function

16

Chapter 6
Model
performance

6 Model performance

17

The usual first step of a Machine Learning workflow is to check the model
performance. Our example is a regression problem so the root mean squared error is
a relevant metric.

DALEX has a model_performance function that creates an object containing the
residuals, which you can explore yourself or use the plot method of the DALEX object
to plot common performance metrics.

6.1 Make the model performance object

mp_lm <- model_performance(explainer_lm)
mp_lm
#> Measures for: regression
#> mse : 81450.82
#> rmse : 285.3959
#> r2 : 0.8995432
#> mad : 222.8607
#>
#> Residuals:
#> 0% 10% 20% 30% 40% 50%

60%
#> -301.1235 -236.7025 -218.2758 -200.4750 -185.7940 -163.8277

-134.1419
#> 70% 80% 90% 100%
#> 350.7932 392.8023 427.8070 563.5238

mp_rf <- model_performance(explainer_rf)
mp_rf
#> Measures for: regression
#> mse : 41056.92
#> rmse : 202.6251
#> r2 : 0.9493627
#> mad : 116.7112
#>
#> Residuals:
#> 0% 10% 20% 30% 40%
#> -615.326133 -203.760343 -141.216828 -100.328513 -67.101563
#> 50% 60% 70% 80% 90%
#> -30.871354 7.079974 69.388912 159.319895 274.509470
#> 100%
#> 947.041032

6.2 Plot residuals

18

6.2 Plot residuals

6.1.1 Exercise

Explore the structure of the model performance objects created.

Hint: Use the str() function.

plot(mp_lm, mp_rf, geom = "histogram")

6.2.1 Exercise

Plot the model performance as a boxplot.

20

Chapter 7
Model
Diagnostics

7 Model Diagnostics

21

Model diagnostics allow you to explore the relationship between your model outcome
and the different features. The first step is to plot predicted values against observed
ones.

As expected, the random forest is a really good model.

md_rf <- model_diagnostics(explainer_rf)
md_lm <- model_diagnostics(explainer_lm)

plot(md_rf, variable = "y", yvariable = "y_hat")

plot(md_lm, variable = "y", yvariable = "y_hat")

22

The two groups of residuals are represented on the y vs. y_hat plot.

Let’s take a look at how residuals correlate with observed.

plot(md_rf, variable = "y", yvariable = "residuals", smooth = FALSE)

7 Model Diagnostics

23

From the plots above we can conclude that Random Forest underestimates for high
value flats and overestimates low value flats.

Linear model shows two groups of residuals! The residuals are not independent and
identically distributed. Let’s explore which variables have a non-linear effect on the
estimate.

plot(md_lm, variable = "y", yvariable = "residuals", smooth = FALSE)

plot(md_lm, variable = "construction.year", yvariable = "residuals",
smooth = FALSE)

24

Construction year is non-linearly correlated to the residuals. This is the pattern we
observe in the model residuals for the linear regression.

7.0.1 Exercise

Create some additional diagnostic plots for the random and linear
model.

Consider:

1. Exploring different variables.
2. Comparing both models for one particular variable.
3. Plotting the observed values against the absolute residuals.
4. Plotting absolute residuals (hint: use
yvariable="abs_residuals").

26

Chapter 8
Global explainer

8 Global explainer

27

8.1 Variable Importance

To understand the importance of an explanatory variable, we can use a method
provided by DALEX, described by Fisher, Rudin, and Dominici (http://jmlr.org/papers/v20/
18-760.html).

The model_parts function begins by calculating the loss for the full model (the default
loss function for regression models is RMSE). Then, the values of one variable are
permuted and the loss is recalculated. This is repeated for each variable.

As the perturbations are random, we repeat the process a number of times and
average the results. The greater the change in loss is, the more important we deem
the variable to be.

The baseline of the bars above represent the loss of the full model. The bars represent
the average loss when when the variable is permuted. The boxplots show the range of
losses for the (B=10) permutations calculated. Note the difference in importance of the
construction.year variable.

set.seed(220817)
fi_rf <- DALEX::model_parts(explainer_rf, B = 10)
fi_lm <- DALEX::model_parts(explainer_lm, B = 10)

plot(fi_rf, fi_lm)

http://jmlr.org/papers/v20/18-760.html

8.2 Partial Dependency Plots (…

28

8.2 Partial Dependency Plots (PDP)

Partial dependence plots (PDPs) describe the marginal effect of one or two features on
the target variable.

8.2.1 Categorical variables

In the case of categorical variables, this is easy to calculate. We just set the value of
the category we are interested in to be the same for all observations. In the case of the
apartments dataset, we can set the district of each apartment to be identical and
compute the average prediction to understand the marginal effect of that district on
apartment value.

If you are familiar with Warsaw, you might know Srodmiescie is the city center, Ochota,
Mokotow and Zoliborz are well connected to the center and the rest of the districts are
further out from the city center. The effect of being closer or further from the city center
is evident, when we calculate the PDP.

pdp_cat_rf <- model_profile(explainer_rf,
 variables = "district",
 type = "partial")
pdp_cat_lm <- model_profile(explainer_lm,
 variables = "district",
 type = "partial")
plot(pdp_cat_rf, pdp_cat_lm)

8 Global explainer

29

8.2.2 Continuous variables

In the case of continuous variables, a PDP can reveal whether the relationship
between a feature and target is linear, monotonic, or something else. The computation
for the partial dependence of apartment value on construction year, is as follows:

1. Pick a year
2. Set the year of construction of every observation to that year
3. Use this modified dataset to calculate the average apartment price
4. Repeat steps 1-3 for every year and draw a curve

For other continuous variables, these steps are followed for each unique feature value.

pdp_rf <- model_profile(explainer_rf, variables =
"construction.year", type = "partial")

pdp_lm <- model_profile(explainer_lm, variables =
"construction.year", type = "partial")

plot(pdp_rf, pdp_lm)

8.2 Partial Dependency Plots (…

30

The PDP above shows that the linear model has a linear partial dependence
relationship with construction year, whereas the relationship in the random forest
model is non-linear and non-monotonous.

The benefits of using PDPs are that they are easy to implement and the computation
behind it is fairly intuitive. However, while the results of this method can be easy to
interpret, it assumes that the features are independent.

As described by Christopher Molner in his book ‘Interpretable Machine Learning’,

“If the feature for which you computed the PDP is not correlated with
the other features, then the PDPs perfectly represent how the feature
in�uences the prediction on average. In the uncorrelated case, the
interpretation is clear: The partial dependence plot shows how the
average prediction in your dataset changes when the j-th feature is
changed.”

If the assumption of independence is violated, your PDP assumes the existence of
very unlikely data points. For example, we know that the square footage of a flat,
correlates with the number of rooms. The PDP assumes that there exists a flat that is
20 squared meters with 6 bedrooms. The next section introduces a tool that does not
need to make the assumption of feature independence.

8 Global explainer

31

8.3 Accumulated Local E�ect (ALE)

PDPs suffer from two great limitations when features are correlated:

1. they assume the existence of unlikely data points
2. they cannot disentangle the effect of each feature. In the above example, you

would be estimating the effect of the square footage and the number of room
together

Accumulated Local Effect (ALE) curves solve this problem by using a difference in
prediction rather than an average.

The process is as follows:

1. select an interval around a value of interest
2. for each points in that interval, find the difference between the observation if the

feature was set to the upper bound vs the lower bound
3. Average these differences
4. repeat steps 1-3 and draw a curve through plotted points

The function of Accumulated local effects (ALE) is similar to PDPs, in that it also works
to reveal how a feature affects predictions on average. However, it addresses a major
drawback of PDPs and does not rely on variables being independent.

To better understand the ALE method, consider the apartments with surface areas in
the range (20,22). For each observation in that interval, calculate the difference
between its predicted value if we set the surface area to be 22m2 vs if we set the
surface area to be 20m2. Sum these differences and divide by the number of
observations to find the average effect of an apartment having a surface area of 21m2.
The figure below illustrates this process.

8.2.3 Exercise

Create PDPs for both models with variables = NULL. What
relationships do you observe?

8.3 Accumulated Local Effect (…

32

ALE calculation for variable x1, correlated with x2, as shown in Interpretable Machine
Learning: A Guide for Making Black Box Models Explainable5

In addition to being an unbiased alternative to PDPs, ALE plots are still easy to
interpret and faster to compute. On the down side, as effects are calculated per
interval, interpretation of effects across intervals is not possible when features are
strongly correlated.

5https://christophm.github.io/interpretable‑ml‑book/ale.html

ale_rf <- model_profile(explainer_rf,
 variables = "surface",
 type = "accumulated")

ale_lm <- model_profile(explainer_lm,
 variables = "surface",
 type = "accumulated"
)

plot(ale_rf, ale_lm)

https://christophm.github.io/interpretable-ml-book/ale.html

8 Global explainer

33

34

Chapter 9
Local explainer

9 Local explainer

35

Local explainer methods explore individual predictions and can help answer a question
such as: which variable is having the greatest impact on my apartment’s value (as
opposed to the average value of apartments in Warsaw).

9.1 Break down

A break-down plot is a local explainer aiming to answer this question.

To understand the effect of variables on the value of apartment 5 in this dataset, we
begin with the average price of all apartments, then (in the case of the LM), consider
we set the surface area of all apartments in the dataset to be 144m^2, now we have a
new average price. Next we set the district of all observations to be Mokotow, then we
set the number of rooms to be 5 etc.. In the end, we end up with the prediction for
apartment 5, as we have set all variables to be identical to that of apartment 5.

Note that the increase or decrease in estimated price depends on the order we set the
variables.

bd_rf <- predict_parts(explainer_rf, new_observation =
apartments[5,])

bd_lm <- predict_parts(explainer_lm, new_observation =
apartments[5,])

plot(bd_lm)

9.2 Shapley Values

36

Break-down plots are model-agnostic, compact and easy to understand. The main
drawback is that the order of variables becomes important if features are correlated or
the if the model contains interaction terms.

9.2 Shapley Values

Exploring Shapley values is one way to solve the break down plot problem, as it takes
the effects of variable order into consideration. In fact, we can think of Shapley values
as the average effect of each variable for a number of break-down plots with random
variable orderings.

Shapley values originate in game theory and aim to solve the problem that given
varying contributions from different players in a cooperative situation, how might the
surplus gains be most fairly distributed? Similarly, we can look at a model and ask,
how can we best score variables in terms on significance of contribution to
predictions?

plot(bd_rf)

9 Local explainer

37

shap_rf <- predict_parts(explainer_rf, new_observation =

apartments[5,],
 type = "shap", N =50,
 B =50)
plot(shap_rf)

shap_lm <- predict_parts(explainer_lm, new_observation =

apartments[5,],
 type = "shap", N =50,
 B =50)

plot(shap_lm)

9.3 Local Interpretable Model-a…

38

SHAP provides an intuitive solution to the break down plot variable ordering problem,
however, for large models, the calculations required may be overly time-consuming.

9.3 Local Interpretable Model-agnostic Explanations
(LIME)

In models with thousands or even millions of features, SHAP and BD are not
appropriate: calculating the Shapley Values for this many features implies a
prohibitively large number of iterations and breaking down a prediction in millions of
tiny parts might end up being meaningless.

Large feature sets are very in genomics and when working with text or image data. In
such cases, sparse explanations with a small number of variables offer a useful
alternative. One of these sparse explainer is the Local Interpretable Model-agnostic
Explanations (LIME) method.

The intuition behind LIME is best illustrated with the image below. In this scenario, we
want to explain how the complex model behaves for the data point represented by the
cross. The complex model’s predictions are represented by the green and orange
areas.

The LIME method consists in creating an artificial dataset around the data point we
need to explain. Then, we can fit an explainable model on this artificial dataset to
locally approximate the predictions of the black-box model. In the image below, the
dotted line represents a linear model fitted on the artificial dataset.

9 Local explainer

39

Illustration of the intuition behind LIME. Explanatory Model Analysis, Przemyslaw
Biecek and Tomasz Burzykowski6

6https://ema.drwhy.ai/LIME.html

https://ema.drwhy.ai/LIME.html

9.3 Local Interpretable Model-a…

40

set.seed(220808)
library(DALEXtra)
library(lime)

model_type.dalex_explainer <- DALEXtra::model_type.dalex_explainer
predict_model.dalex_explainer <-

DALEXtra::predict_model.dalex_explainer

library(localModel)
lime_apt5 <- predict_surrogate(explainer = explainer_rf,
 predict_model.dalex_explainer,
 model_type.dalex_explainer,
 new_observation = apartments[5,],
 n_features = 3,
 n_permutations = 1000,
 type = "lime")
#> Warning in explain.data.frame(x = new_observation, explainer =
#> lime_model, : "labels" and "n_labels" arguments are ignored when
#> explaining regression models
plot(lime_apt5)

42

Chapter 10
Exercise solutions

10 Exercise solutions

43

6.1.1 Exercise

str(mp_rf)

6.2.1 Exercise

plot(mp_lm, mp_rf, geom = “boxplot”)

7.0.1 Exercise

plot(md_rf, md_lm)

plot(md_rf, md_lm, variable = “construction.year”)

plot(md_rf, variable = “y”, yvariable = “abs_residuals”)

plot(md_rf, variable = “ids”)

8.2.3 Exercise

plot(model_profile(explainer_lm, variables = NULL, type = “partial”))

plot(model_profile(explainer_rf, variables = NULL, type = “partial”))

44

11
Resources

11 Resources

45

This workshop was largely inspired by the work of other people who contributed to
open source resources.

Szymon Maksymiuk, Alicja Gosiewska, Przemysław Biecek (2021), Landscape
of R packages for eXplainable Artificial Intelligence7
Christoph Molnar (2022), Interpretable Machine Learning: A Guide for
Making Black Box Models Explainable8
Przemyslaw Biecek, Tomasz Burzykowski (2020), Explanatory Model Analysis:
Explore, Explain, and Examine Predictive Models. With examples in R and
Python9
Seungjun (Josh) Kim (2021), Explainable AI (XAI) Methods Part 1 — Partial
Dependence Plot (PDP)10
Przemyslaw Biecek (2020),DALEX v 1.0 and the Explanatory Model
Analysis11

David Dalpiaz(2022), Applied Statistics with R12

7https://arxiv.org/pdf/2009.13248.pdf
8https://christophm.github.io/interpretable‑ml‑book/pdp.html
9https://ema.drwhy.ai/breakDown.html
10https://towardsdatascience.com/explainable‑ai‑xai‑methods‑part‑1‑partial‑dependence‑plot‑pdp‑349441901a3d
11https://www.r‑bloggers.com/2020/02/dalex‑v‑1‑0‑and‑the‑explanatory‑model‑analysis/
12https://book.stat420.org/model‑diagnostics.html

https://arxiv.org/pdf/2009.13248.pdf
https://christophm.github.io/interpretable-ml-book/pdp.html
https://ema.drwhy.ai/breakDown.html
https://towardsdatascience.com/explainable-ai-xai-methods-part-1-partial-dependence-plot-pdp-349441901a3d
https://www.r-bloggers.com/2020/02/dalex-v-1-0-and-the-explanatory-model-analysis/
https://book.stat420.org/model-diagnostics.html

###########################
Explainable AI workshop
###########################

Environment set up -----------

Install packages
packages_to_install <- c('DALEX', 'randomForest', 'dplyr', 'localModel',
 'DALEXtra')
install.packages(packages_to_install)

Load packages
library(DALEX)
library(DALEXtra)
library(randomForest)
library(tidyverse)
library(DALEXtra)
library(lime)
library(localModel)

load data
data("apartments")
data("apartments_test")

transform data
data_transform <- function(data){
 data %>%
 mutate(random_var = runif(dim(data)[1]),
 no.rooms = as.factor(no.rooms),
 floor = as.factor(floor))
}

apartments <- apartments %>% data_transform()

apartments_test <- apartments_test %>% data_transform()

head(apartments)

Make two models --------------
set.seed(220808)

train RF model
apartments_rf_model <-
 randomForest::randomForest(m2.price ~ .,
 data = apartments)

train LM model
apartments_lm_model <- lm(m2.price ~ .,
 data = apartments)

predict on test set using RF
predicted_rf <- predict(apartments_rf_model,
 apartments_test)

predict on test set using LM
predicted_lm <- predict(apartments_lm_model,
 apartments_test)

Build the explainers --------------
explainer for LM

explainer for RF model

Model performance -------------------
Make the model performance object with model_performance

use the str() function to explore the object

Plot residuals

plot one graph

plot both on one graph

try with geom = "histogram"

try with geom = "boxplot"

Model Diagnostics ------------

model_diagnostics object with model_diagnostics()

plot diagnostics: y against y_hat

plot y against residuals (residuals = observed - predicted if residuals > 0 model
underestimates)

plot construction.year against residuals

try different variables

try both model for one variable

try absolute residuals

Global explainer -------------
Feature Importance

Partial Dependency Plots (PDP)
use the model_profile() function
categorical vars

Continuous variables
pdp one continuous var

pdp all variables

Accumulated Local Effects (ALE)

create ALE curve with model_profile()

plot both together

Local explainer -------------
Break down of predictions with predict_parts()

Shapley Values with predict_parts()

LIME: Local Interpretable Model-agnostic Explanations --------
set.seed(220808)
library(DALEXtra)
library(lime)
library(localModel)

create a model_type

create surrogate model

explain prediction with predict_surrogate()

Try for another flat

Try another LIME implementation

EARL Conference 2022 16

	Explainable_Machine_Learning_slides
	Explainable_Machine_Learning
	eXplainable_AI
	1 Pre-requisites
	2 Introduction
	3 Environment set up
	4 Make two models
	5 Build the explainers
	6 Model performance
	6.1 Make the model performance object
	6.2 Plot residuals

	7 Model Diagnostics
	8 Global explainer
	8.1 Variable Importance
	8.2 Partial Dependency Plots (PDP)
	8.3 Accumulated Local Effect (ALE)

	9 Local explainer
	9.1 Break down
	9.2 Shapley Values
	9.3 Local Interpretable Model-agnostic Explanations (LIME)

	workshop-script

